Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system
نویسندگان
چکیده
Specific signals (degrons) regulate protein turnover mediated by the ubiquitin-proteasome system. Here we systematically analyse known degrons and propose a tripartite model comprising the following: (1) a primary degron (peptide motif) that specifies substrate recognition by cognate E3 ubiquitin ligases, (2) secondary site(s) comprising a single or multiple neighbouring ubiquitinated lysine(s) and (3) a structurally disordered segment that initiates substrate unfolding at the 26S proteasome. Primary degron sequences are conserved among orthologues and occur in structurally disordered regions that undergo E3-induced folding-on-binding. Posttranslational modifications can switch primary degrons into E3-binding-competent states, thereby integrating degradation with signalling pathways. Degradation-linked lysines tend to be located within disordered segments that also initiate substrate degradation by effective proteasomal engagement. Many characterized mutations and alternative isoforms with abrogated degron components are implicated in disease. These effects result from increased protein stability and interactome rewiring. The distributed nature of degrons ensures regulation, specificity and combinatorial control of degradation.
منابع مشابه
A Comparative Analysis of the Ubiquitination Kinetics of Multiple Degrons to Identify an Ideal Targeting Sequence for a Proteasome Reporter
The ubiquitin proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins. The conjugation of a polyubiquitin chain, or polyubiquitination, to a target protein requires an increasingly diverse cascade of enzymes culminating with the E3 ubiquitin ligases. Protein recognition by an E3 ligase occurs through a s...
متن کاملA Regulated, Ubiquitin-Independent Degron in IκBα.
Whereas ubiquitin-dependent degrons have been characterized in some detail, how proteins may be targeted to ubiquitin-independent proteasomal degradation remains unclear. Here we show that IκBα contains an ubiquitin-independent degron whose activity is portable to heterologous proteins such as the globular protein GFP (green fluorescent protein) via a proteasome-dependent, ubiquitin-independent...
متن کاملOncoprotein ubiquitylation
Many molecular events are terminated by rapid protein degradation via the ubiquitin–proteasome system. Most target proteins are recognized by E3 ubiquitin ligases, often after specific protein modifications, leading to their poly-ubiquitylation and subsequent degradation by the proteasome. One such ubiquitin ligase is Fbw7, a member of the F-box protein family that associates with Skp1, Cul1, a...
متن کاملThe ubiquitin-proteasome pathway and plant development.
The importance of the ubiquitin-proteasome pathway to cellular regulation in eukaryotes has become increasingly apparent during the last several years. This fact was formally acknowledged recently by the awarding of the 2004 Nobel Prize in Chemistry to Aaron Ciechanover, Avram Hershko, and Irwin Rose for the discovery of ubiquitin-mediated protein degradation. In plants, regulated protein degra...
متن کاملUBE2Q1, as Down Regulated Gene in Pediatric Acute Lymphoblastic Leukemia
Ubiquitin - proteasome system (UPS), the major protein degradation pathway in the cells, typically degrades short - lived and damaged proteins and regulates growth and stress responses. This pathway is altered in various cancers, including Acute Lymphoblastic Leukemia (ALL). ALL begins with a change in bone marrow cells and is the most common type of leukemia in children under 15 years. UBE2Q1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016